## 

## Warm-Up!

1. Since $B A: A C=3: 2$, it follows that $A C=2 / 5 B C$. Therefore, $A C=2 / 5 \times 45=\mathbf{1 8}$.
2. Since $A D=5$ units and $A B=B C=2 A D$, it follows that $A B=B C=2(5)=10$ units. If we draw segment $D E$, parallel to side $A B$ and intersecting segment $B C$ at point $E$, as shown, rectangle $A B E D$ is formed with side lengths $A D=B E=5$ units and $A B=$ $D E=10$ units, and with area is $10 \times 5=50$ units $^{2}$. So, right triangle DEC, with leg lengths $D E=10$ units and $C E=10-5=5$ units, has area $(1 / 2) \times 10 \times 5=$ 25 units $^{2}$. The total area of trapezoid ABCD, then, is $50+25=75$ units $^{2}$.

3. Since segments MN and OP are parallel, we can conclude that $\triangle \mathrm{MNQ} \sim \triangle \mathrm{POQ}$ (Angle-Angle). Therefore, the ratios of corresponding sides of the triangles are congruent. Since ON = 24 units, it follows that $\mathrm{OQ}=24-\mathrm{NO}$. We can set up the following proportion: $\mathrm{NQ} /(24-\mathrm{NO})=12 / 20$. Cross-multiplying and solving for NQ, we get $20(\mathrm{NQ})=12(24-\mathrm{NQ}) \rightarrow 20(\mathrm{NQ})=288-12(\mathrm{NQ})$ $\rightarrow 32(\mathrm{NO})=288 \rightarrow \mathrm{NQ}=9$ units.
4. A segment drawn connecting $A$ with $E$, as shown, creates a right triangle ADE and trapezoid ABCE. Triangle ADE has legs of length 10 units and 2 units, making its area $(1 / 2) \times 10 \times 2=10$ units $^{2}$. The area of trapezoid ABCE is difference between the area rectangle $A B C D$ and the area of triangle ADE. Rectangle ABCD has area $10 \times 6=$ 60 units $^{2}$. So, the area of trapezoid $A B C E$ is $60-10=50$ units $^{2}$. The ratio of the area of triangle $A D E$ to the area of trapezoid $A B C E$, then, is $10 / 50=\mathbf{1 / 5}$.


The Problems are solved in the MATHCOUNTS ${ }^{\circ}$ Jl $[$ [if $n$ in video.

## Follow-up Problems

5. We are asked to determine the area of the shaded quadrilateral, which happens to be a trapezoid. The height of the trapezoid is 4 , the side length of the middle square. Notice that triangles MNO, MPR and MST, shown in the figure, are similar right triangles. The base NO of the trapezoid is the shorter leg of $\triangle \mathrm{MNO}$ and the base PR is the shorter leg of $\triangle M P R$. Triangle MST has a shorter leg of length $S T=6$ and a longer leg of length $M S=2+4+6=12$. The ratio of the lengths of the shorter leg to the longer leg is $1: 2$. The longer leg of $\triangle M P R$ has length MP $=2+4=6$, so its shorter leg must have length $P R=1 / 2 \times 6=3$. The longer leg of $\Delta M N O$ has length $M N=2$, so its shorter leg must have length $\mathrm{NO}=1 / 2 \times 2=1$. Therefore, the trapezoid has area $1 / 2 \times(1+3) \times 4=8$ units $^{2}$.

6. Since $2(0)-4=-4$, it follows that $y=2 x-4$ intersects the $y$-axis at $\mathrm{A}(0,-4)$. Similarly, since $-3(0)+16=16$, it follows that $y=-3 x+16$ intersects the $y$-axis at $\mathrm{B}(0,16)$. These two lines intersect each other when $2 x-4=-3 x+16 \rightarrow 5 x=20$ $\rightarrow x=4$ and $y=2(4)-4=8-4=4$, which we'll label C(4,4). As the figure shows, the interior region formed by $y=2 x-4, y=-3 x+16$ and the $y$-axis is $\triangle A B C$. The dashed segments show the extension of $y=-3 x+16$ beyond point C and a portion of the horizontal line $y=-4$. The intersection of these dashed segements occurs when $-4=-3 x+16 \rightarrow 3 x=20 \rightarrow x=20 / 3$, at a point we'll label $D(20 / 3,-4)$. As the figure shows, the area of $\triangle A B C$ is equal to the area of right triangle $A B D$ minus the area of $\triangle A C D$. Triangles $A B D$ and $A C D$ both have base length $A D=|20 / 3-0|=$ $20 / 3$ units. Right triangle ABD has height $|16-(-4)|=20$ units, and $\triangle A C D$ has height $|4-(-4)|=8$ units. So, $\Delta A B C$ has area $(1 / 2)(20 / 3)(20)-(1 / 2)(20 / 3)(8)=$ $(10 / 3)(20-8)=(10 / 3)(12)=(10)(4)=40$ units $^{2}$

7. Triangle $B C D$ is a $30-60-90$ right triangle with a shorter leg of length 6 . Based on properties of 30-60-90 right triangles, segment $B C$, the longer leg, has length $6 \sqrt{3}$. Since $M$ is the midpoint of segment $A D, M D=6 \sqrt{3} \div 2=3 \sqrt{3}$. For right triangle $C D M$, we know $C D=6$ and $D M=3 \sqrt{3}$, so we can use the Pythagorean Theorem to determine CM. We have $\mathrm{CM}^{2}=6^{2}+(3 \sqrt{3})^{2} \rightarrow$ $\mathrm{CM}=\sqrt{ }(36+27) \rightarrow \mathrm{CM}=\sqrt{ }(63) \rightarrow \mathrm{CM}=3 \sqrt{7}$. If $m \angle \mathrm{DBC}=30^{\circ}$, then $m \angle \mathrm{BDA}=30^{\circ}$ because they are alternate interior angles. Also $m \angle \mathrm{CKB}=m \angle \mathrm{MKD}$ since they are vertical angles. That means $\Delta C K B \sim \Delta M K D$, and BC/DM $=C K / M K$. Substituting and simplifying BC/DM, we have $2 / 1=$ CK/MK, which means $M K=1 / 3 C M \rightarrow M K=1 / 3 \times 3 \sqrt{7} \rightarrow M K=\sqrt{7}$.
8. From the figure, we can see that the area of $\triangle \mathrm{ACD}$ is the sum of the areas of $\triangle A B E$ and trapezoid BCDE. Also, we are told that the area of trapezoid BCDE is 8 times the area of $\triangle \mathrm{ABE}$. It follows that the area of $\triangle A C D$ is 9 times the area of $\triangle A B E$. That means the ratio of sides $B E$ and $C D$ is $\sqrt{1 / \sqrt{ } 9=1 / 3 \text {. Since }}$ segments $B E$ and CD are also sides of triangles EBX and CDX, respectively,
 it follows that the ratio of the areas of $\triangle \mathrm{EBX}$ and $\Delta \mathrm{CDX}$ is $1^{2 /} / 3^{2}=1 / 9$. The problem states that the area of $\triangle C D X$ is 27 units $^{2}$, so the area of $\Delta E B X$ is $(1 / 9) \times 27=3$ units ${ }^{2}$. Using the method from the video, we can determine the areas of $\triangle B C X$ and $\triangle D E X$ by multiplying $\sqrt{3} \times \sqrt{27}=\sqrt{81}$ $=9$. Therefore, $\triangle \mathrm{BCX}$ and $\triangle \mathrm{DEX}$ each have an area of 9 units ${ }^{2}$. We now can calculate the area of trapezoid BCDE to be $3+27+9+9=48$ units $^{2}$. Using Harvey's trick results in the same answer since $(\sqrt{3}+\sqrt{27})^{2}=(\sqrt{3}+3 \sqrt{3})^{2}=(4 \sqrt{3})^{2}=48$ units $^{2}$. So the area of $\triangle A B E$ is $(1 / 8) \times 48=$ 6 units $^{2}$. Thus, the area of $\triangle \mathrm{ACD}$ is $48+6=\mathbf{5 4}$ units $^{2}$. This also confirms our assertion that the area of $\triangle A C D$ is 9 times the area of $\triangle A B E$ since $9 \times 6=\mathbf{5 4}$ units ${ }^{2}$.
